A soft robust model for optimization under ambiguity

A soft robust model for optimization under ambiguity

0.00 Avg rating0 Votes
Article ID: iaor20105614
Volume: 58
Issue: 4-Part-2
Start Page Number: 1220
End Page Number: 1234
Publication Date: Jul 2010
Journal: Operations Research
Authors: , ,
Keywords: robust optimization
Abstract:

In this paper, we propose a framework for robust optimization that relaxes the standard notion of robustness by allowing the decision maker to vary the protection level in a smooth way across the uncertainty set. We apply our approach to the problem of maximizing the expected value of a payoff function when the underlying distribution is ambiguous and therefore robustness is relevant. Our primary objective is to develop this framework and relate it to the standard notion of robustness, which deals with only a single guarantee across one uncertainty set. First, we show that our approach connects closely to the theory of convex risk measures. We show that the complexity of this approach is equivalent to that of solving a small number of standard robust problems. We then investigate the conservatism benefits and downside probability guarantees implied by this approach and compare to the standard robust approach. Finally, we illustrate the methodology on an asset allocation example consisting of historical market data over a 25-year investment horizon and find in every case we explore that relaxing standard robustness with soft robustness yields a seemingly favorable risk-return trade-off: each case results in a higher out-of-sample expected return for a relatively minor degradation of out-of-sample downside performance.

Reviews

Required fields are marked *. Your email address will not be published.