| Article ID: | iaor20104777 |
| Volume: | 58 |
| Issue: | 3 |
| Start Page Number: | 595 |
| End Page Number: | 612 |
| Publication Date: | May 2010 |
| Journal: | Operations Research |
| Authors: | Ye Yinyu, Delage Erick |
| Keywords: | programming: probabilistic |
Stochastic programming can effectively describe many decision-making problems in uncertain environments. Unfortunately, such programs are often computationally demanding to solve. In addition, their solution can be misleading when there is ambiguity in the choice of a distribution for the random parameters. In this paper, we propose a model that describes uncertainty in both the distribution form (discrete, Gaussian, exponential, etc.) and moments (mean and covariance matrix). We demonstrate that for a wide range of cost functions the associated distributionally robust (or min-max) stochastic program can be solved efficiently. Furthermore, by deriving a new confidence region for the mean and the covariance matrix of a random vector, we provide probabilistic arguments for using our model in problems that rely heavily on historical data. These arguments are confirmed in a practical example of portfolio selection, where our framework leads to better-performing policies on the ‘true’ distribution underlying the daily returns of financial assets.