Hierarchical optimization: An introduction

Hierarchical optimization: An introduction

0.00 Avg rating0 Votes
Article ID: iaor19921119
Country: Switzerland
Volume: 34
Start Page Number: 1
End Page Number: 11
Publication Date: Nov 1992
Journal: Annals of Operations Research
Authors: ,
Keywords: decision theory: multiple criteria
Abstract:

Decision problems involving multiple agents invariably lead to conflict and gaming. In recent years, multi-agent systems have been analyzed using approaches that explicitly assign to each agent a unique objective function and set of decision variables; the system is defined by a set of common constraints that affect all agents. The decisions made by each agent in these approaches affect the decisions made by the others and their objectives. When strategies are selected simultaneously, in a noncooperative manner, solutions are defined as equilibrium points so that at optimality no player can do better by unilaterally altering his choice. There are other types of noncooperative decision problems, though, where there is a hierarchical ordering of the agents, and one set has the authority to strongly influence the preferences of the other agents. Such situations are analyzed using a concept known as a Stackelberg strategy. The hierarchical optimization problem conceptually extends the open-loop Stackelberg model to K players. In this paper, the authors provide a brief introduction and survey of recent work in the literature. It should be noted that the survey is not meant to be exhaustive, but rather to place recent papers in context.

Reviews

Required fields are marked *. Your email address will not be published.