A Steiner tree problem on the plane is that of finding a minimum length Steiner tree connecting a given set K of terminals and lying within a given region R of the Euclidean plane; it includes as special cases the Euclidean Steiner minimal tree problem (ESMT), the rectilinear Steiner tree problem (RST), and the Steiner tree problem on graphs (STG). A Steiner hull for K in R generically refers to any subregion of R known to contain a Steiner tree. This paper gives a survey of the role of Steiner hulls in the Steiner tree problem. The significance of Steiner hulls in the efficient solution of Steiner tree problems is outlined, and then a compendium is given of the known Steiner hull constructions for ESMT, RST, and STG problems.