Optimizing feature selection to improve medical diagnosis

Optimizing feature selection to improve medical diagnosis

0.00 Avg rating0 Votes
Article ID: iaor20101509
Volume: 174
Issue: 1
Start Page Number: 169
End Page Number: 183
Publication Date: Feb 2010
Journal: Annals of Operations Research
Authors: ,
Keywords: datamining
Abstract:

In this paper, we propose a new optimization framework for improving feature selection in medical data classification. We call this framework Support Feature Machine (SFM). The use of SFM in feature selection is to find the optimal group of features that show strong separability between two classes. The separability is measured in terms of inter-class and intra-class distances. The objective of SFM optimization model is to maximize the correctly classified data samples in the training set, whose intra-class distances are smaller than inter-class distances. This concept can be incorporated with the modified nearest neighbor rule for unbalanced data. In addition, a variation of SFM that provides the feature weights (prioritization) is also presented. The proposed SFM framework and its extensions were tested on 5 real medical datasets that are related to the diagnosis of epilepsy, breast cancer, heart disease, diabetes, and liver disorders. The classification performance of SFM is compared with those of support vector machine (SVM) classification and Logical Data Analysis (LAD), which is also an optimization-based feature selection technique. SFM gives very good classification results, yet uses far fewer features to make the decision than SVM and LAD. This result provides a very significant implication in diagnostic practice. The outcome of this study suggests that the SFM framework can be used as a quick decision-making tool in real clinical settings.

Reviews

Required fields are marked *. Your email address will not be published.