Article ID: | iaor20101232 |
Volume: | 46 |
Issue: | 3 |
Start Page Number: | 281 |
End Page Number: | 294 |
Publication Date: | May 2010 |
Journal: | Transportation Research Part E |
Authors: | Nagurney Anna |
In this paper, we model the supply chain network design problem with oligopolistic firms who are involved in the competitive production, storage, and distribution of a homogeneous product to multiple demand markets. The profit-maximizing firms select both the capacities associated with the various supply chain network activities as well as the product quantities. We formulate the governing Nash–Cournot equilibrium conditions as a variational inequality problem and identify several special cases of the model, notably, a generalization of a spatial oligopoly and a classical oligopoly problem to include design capacity variables. The proposed computational approach, which is based on projected dynamical systems, fully exploits the network structure of the problems and yields closed form solutions at each iteration. In order to illustrate the modeling framework and the algorithm, we also provide solutions to a spectrum of numerical supply chain network oligopoly design examples.