Article ID: | iaor20101097 |
Volume: | 58 |
Issue: | 1 |
Start Page Number: | 229 |
End Page Number: | 243 |
Publication Date: | Jan 2010 |
Journal: | Operations Research |
Authors: | Ntaimo Lewis |
Keywords: | programming: probabilistic |
This paper introduces disjunctive decomposition for two-stage mixed 0-1 stochastic integer programs (SIPs) with random recourse. Disjunctive decomposition allows for cutting planes based on disjunctive programming to be generated for each scenario subproblem under a temporal decomposition setting of the SIP problem. A new class of valid inequalities for mixed 0-1 SIP with random recourse is presented. In particular, we derive valid inequalities that allow for scenario subproblems for SIP with random recourse but deterministic technology matrix and right-hand side vector to share cut coefficients. The valid inequalities are used to derive a disjunctive decomposition method whose derivation has been motivated by real-life stochastic server location problems with random recourse, which find many applications in operations research. Computational results with large-scale instances to demonstrate the potential of the method are reported.