As a generalization of k-out-of-n:F and consecutive k-out-of-n:F systems, the consecutive k-within-m-out-of-n:F system consists of n linearly ordered components such that the system fails iff there are m consecutive components which include among them at least k failed components. In this article, the reliability properties of consecutive k-within-m-out-of-n:F systems with exchangeable components are studied. The bounds and approximations for the survival function are provided. A Monte Carlo estimator of system signature is obtained and used to approximate survival function. The results are illustrated and numerics are provided for an exchangeable multivariate Pareto distribution.