Article ID: | iaor200969546 |
Country: | United States |
Volume: | 55 |
Issue: | 7 |
Start Page Number: | 643 |
End Page Number: | 653 |
Publication Date: | Oct 2008 |
Journal: | Naval Research Logistics |
Authors: | Zhu Joe, Liang Liang, Cook Wade D |
Keywords: | game theory |
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs). This tool has been utilized by a number of authors to examine two-stage processes, where all the outputs from the first stage are the only inputs to the second stage. The current article examines and extends these models using game theory concepts. The resulting models are linear, and imply an efficiency decomposition where the overall efficiency of the two-stage process is a product of the efficiencies of the two individual stages. When there is only one intermediate measure connecting the two stages, both the noncooperative and centralized models yield the same results as applying the standard DEA model to the two stages separately. As a result, the efficiency decomposition is unique. While the noncooperative approach yields a unique efficiency decomposition under multiple intermediate measures, the centralized approach is likely to yield multiple decompositions. Models are developed to test whether the efficiency decomposition arising from the centralized approach is unique. The relations among the noncooperative, centralized, and standard DEA approaches are investigated. Two real world data sets and a randomly generated data set are used to demonstrate the models and verify our findings.