Metric projection onto a closed set: Necessary and sufficient conditions for the global minimum

Metric projection onto a closed set: Necessary and sufficient conditions for the global minimum

0.00 Avg rating0 Votes
Article ID: iaor200927413
Country: United States
Volume: 31
Issue: 1
Start Page Number: 124
End Page Number: 132
Publication Date: Feb 2006
Journal: Mathematics of Operations Research
Authors: ,
Keywords: global optimization
Abstract:

Necessary and sufficient conditions for a local minimum form a well–developed chapter of optimization theory. Determination of such conditions for the global minimum is a challenging problem. Useful conditions are currently known only for a few classes of nonconvex optimization problems. It is important to find different classes of problems for which the required conditions can be obtained. In this paper we examine one of these classes: the minimization of the distance to an arbitrary closed set in a class of ordered normed spaces. We use the structure of the objective function in order to present necessary and sufficient conditions that give a clear understanding of the structure of a global minimizer and can be easily verified for some problems under consideration.

Reviews

Required fields are marked *. Your email address will not be published.