Feasible insertions in job shop scheduling, short cycles and stable sets

Feasible insertions in job shop scheduling, short cycles and stable sets

0.00 Avg rating0 Votes
Article ID: iaor20084390
Country: Netherlands
Volume: 177
Issue: 2
Start Page Number: 763
End Page Number: 785
Publication Date: Mar 2007
Journal: European Journal of Operational Research
Authors: ,
Keywords: programming: integer
Abstract:

Insertion problems arise in scheduling when additional activities have to be inserted into a given schedule. This paper investigates insertion problems in a general disjunctive scheduling framework capturing a variety of job shop scheduling problems and insertion types. First, a class of scheduling problems is introduced, characterized by disjunctive graphs with the so-called short cycle property, and it is shown that in such problems, the feasible selections correspond to the stable sets of maximum cardinality in an associated conflict graph. Two types of insertion problems are then identified where the underlying disjunctive graph is through- or bi-connected. For these cases, it is shown that the short cycle property holds and the conflict graph is bipartite, allowing to derive a polyhedral characterization of all feasible insertions. An efficient method for deciding whether there exists a feasible insertion, and a lower and upper bound procedure for the minimum makespan insertion problem are developed. For bi-connected graphs, this procedure solves the insertion problem to optimality. The obtained results are applied to three extensions of the classical Job Shop, the Multi-Processor Task, Blocking and No-Wait Job Shop, and two types of insertions, job and block insertion.

Reviews

Required fields are marked *. Your email address will not be published.