Solving fuzzy queueing decision problems via a parametric mixed integer nonlinear programming method

Solving fuzzy queueing decision problems via a parametric mixed integer nonlinear programming method

0.00 Avg rating0 Votes
Article ID: iaor20084367
Country: Netherlands
Volume: 177
Issue: 1
Start Page Number: 445
End Page Number: 457
Publication Date: Feb 2007
Journal: European Journal of Operational Research
Authors:
Keywords: fuzzy sets, programming: integer, programming: nonlinear
Abstract:

This paper proposes a mathematical programming method to construct the membership functions of the fuzzy objective value of the cost-based queueing decision problem with the cost coefficients and the arrival rate being fuzzy numbers. On the basis of Zadeh's extension principle, three pairs of mixed integer nonlinear programs parameterized by the possibility level α are formulated to calculate the lower and upper bounds of the minimal expected total cost per unit time at α, through which the membership function of the minimal expected total cost per unit time of the fuzzy objective value is constructed. To provide a suitable optimal service rate for designing queueing systems, the Yager's ranking index method is adopted. Two numerical examples are solved successfully to demonstrate the validity of the proposed method. Since the objective value is completely expressed by a membership function rather than by a crisp value, it conserves the fuzziness of the input information, thus more information is provided for designing queueing systems. The successful extension of queueing decision models to fuzzy environments permits queueing decision models to have wider applications in practice.

Reviews

Required fields are marked *. Your email address will not be published.