A two-level hedging point policy for controlling a manufacturing system with time-delay, demand uncertainty and extra capacity

A two-level hedging point policy for controlling a manufacturing system with time-delay, demand uncertainty and extra capacity

0.00 Avg rating0 Votes
Article ID: iaor20084345
Country: Netherlands
Volume: 176
Issue: 3
Start Page Number: 1528
End Page Number: 1558
Publication Date: Feb 2007
Journal: European Journal of Operational Research
Authors: , ,
Keywords: control processes
Abstract:

This paper focuses on the production control of a manufacturing system with time-delay, demand uncertainty and extra capacity. Time-delay is a typical feature of networked manufacturing systems (NMS), because an NMS is composed of many manufacturing systems with transportation channels among them and the transportation of materials needs time. Besides this, for a manufacturing system in an NMS, the uncertainty of the demand from its downstream manufacturing system is considered; and it is assumed that there exist two-levels of demand rates, i.e., the normal one and the higher one, and that the time between the switching of demand rates are exponentially distributed. To avoid the backlog of demands, it is also assumed that extra production capacity can be used when the work-in-process (WIP) cannot buffer the high-level demands rate. For such a manufacturing system with time-delay, demand uncertainty and extra capacity, the mathematical model for its production control problem is established, with the objective of minimizing the mean costs for WIP inventory and occupation of extra production capacity. To solve the problem, a two-level hedging point policy is proposed. By analyzing the probability distribution of system states, optimal values of the two hedging levels are obtained. Finally, numerical experiments are done to verify the effectiveness of the control policy and the optimality of the hedging levels.

Reviews

Required fields are marked *. Your email address will not be published.