Given a graph G=(V,E), the Hamiltonian completion number of G, HCN(G), is the minimum number of edges to be added to G to make it Hamiltonian. This problem is known to be NP-hard even when G is a line graph. In this paper, local search algorithms for finding HCN(G) when G is a line graph are proposed. The adopted approach is mainly based on finding a set of edge-disjoint trails that dominates all the edges of the root graph of G. Extensive computational experiments conducted on a wide set of instances allow to point out the behavior of the proposed algorithms with respect to both the quality of the solutions and the computation time.