We consider a multi-server queueing model in which arrivals occur according to a Markovian arrival process (MAP). There is a single-server and additional (backup) servers are added or removed depending on sets of thresholds. The service times are assumed to be exponential and the servers are assumed to be homogeneous. A comparison of this model to the classical MAP/M/c queueing model through an optimization problem yields some interesting results that are useful in practical applications. For example, we notice that positively correlated arrival process appears to benefit with the threshold type queueing model. We also give the minimum delay costs and the associated maximum setup costs so that the threshold type queueing model is to be preferred over the classical MAP/M/c model.