Article ID: | iaor19911970 |
Country: | Netherlands |
Volume: | 2 |
Start Page Number: | 121 |
End Page Number: | 144 |
Publication Date: | Feb 1990 |
Journal: | International Journal of Flexible Manufacturing Systems |
Authors: | Shaw Michael J. |
Keywords: | production: FMS |
The planning, scheduling, and control of manufacturing systems can all be viewed as problem-solving activities. In flexible manufacturing systems (FMSs), the computer program carrying out these problem-solving activities must additionally be able to handle the shorter lead time, the flexibility of job routing, the multiprocessing environment, the dynamic changing states, and the versatility of machines. This article presents an artificial intelligence (AI) method to perform manufacturing problem solving. Since the method is driven by manufacturing scenarios represented by symbolic patterns, it is referred to as pattern-directed. The method is based on three AI techniques. The first is the pattern-directed inference technique to capture the dynamic nature of FMSs. The second is the nonlinear planning technique to construct schedules and assign resources. The third is the inductive learning method to generate the pattern-directed heuristics. This article focuses on solving the FMS scheduling problem. In addition, this article reports the computation results to evaluate the utility of various heuristic functions, to identify important design parameters, and to analyze the resulting computational performance in using the pattern-directed approach for manufacturing problem-solving tasks such as scheduling.