Adapting support vector machine methods for horserace odds prediction

Adapting support vector machine methods for horserace odds prediction

0.00 Avg rating0 Votes
Article ID: iaor20073362
Country: Netherlands
Volume: 151
Issue: 1
Start Page Number: 325
End Page Number: 336
Publication Date: Apr 2007
Journal: Annals of Operations Research
Authors:
Keywords: financial
Abstract:

The methodology of Support Vector Machine Methods is adapted in a straightforward manner to enable the analysis of stratified outcomes such as horseracing results. As the strength of the Support Vector Machine approach lies in its apparent ability to produce generalisable models when the dimensionality of the inputs is large relative to the number of observations, such a methodology would appear to be particularly appropriate in the horseracing context, where often the number of input variables deemed as being potentially relevant can be difficult to reconcile with the scarcity of relevant race results. The methods are applied to a relatively small (200 races in-sample) sample of Australian racing data and tested on 100 races out-of-sample with promising results, especially considering the relatively large number (12) of input variables used.

Reviews

Required fields are marked *. Your email address will not be published.