A mathematical programming approach for improving the robustness of least sum of absolute deviations regression

A mathematical programming approach for improving the robustness of least sum of absolute deviations regression

0.00 Avg rating0 Votes
Article ID: iaor20073153
Country: United States
Volume: 53
Issue: 4
Start Page Number: 261
End Page Number: 271
Publication Date: Jun 2006
Journal: Naval Research Logistics
Authors: , ,
Keywords: programming: integer
Abstract:

This paper discusses a novel application of mathematical programming techniques to a regression problem. While least squares regression techniques have been used for a long time, it is known that their robustness properties are not desirable. Specifically, the estimators are known to be too sensitive to data contamination. In this paper we examine regressions based on Least-sum of Absolute Deviations (LAD) and show that the robustness of the estimator can be improved significantly through a judicious choice of weights. The problem of finding optimum weights is formulated as a nonlinear mixed integer program, which is too difficult to solve exactly in general. We demonstrate that our problem is equivalent to a mathematical program with a single functional constraint resembling the knapsack problem and then solve it for a special case. We then generalize this solution to general regression designs. Furthermore, we provide an efficient algorithm to solve the general nonlinear, mixed integer programming problem when the number of predictors is small. We show the efficacy of the weighted LAD estimator using numerical examples.

Reviews

Required fields are marked *. Your email address will not be published.