Article ID: | iaor20072184 |
Country: | United States |
Volume: | 29 |
Issue: | 4 |
Start Page Number: | 923 |
End Page Number: | 934 |
Publication Date: | Nov 2004 |
Journal: | Mathematics of Operations Research |
Authors: | Sun Daning |
Keywords: | production |
It is an important and fundamental question whether an optimal inventory policy exists for a general deterministic multi-item, multistage (GDMM) production and inventory model. We show that an inventory model with a nonsubadditive ordering cost function could have no optimal policy over a finite horizon. However, when the ordering cost is a subadditive function an optimal policy exists for a GDMM production and inventory model over both a finite horizon and an infinite horizon. Properties of optimal inventory policies are crucial to investigating an inventory problem. We present four properties of optimal policies: (1) nonpositive inventory ordering, (2) last-minute ordering, (3) extended last-minute ordering, and (4) nonnegative filling properties. They have been explicitly or implicitly used in analyzing many different inventory models. The last two properties have been used but not proved before.