Multicriteria global minimum cuts

Multicriteria global minimum cuts

0.00 Avg rating0 Votes
Article ID: iaor20071411
Country: United States
Volume: 46
Issue: 1
Start Page Number: 15
End Page Number: 26
Publication Date: Sep 2006
Journal: Algorithmica
Authors: ,
Abstract:

We consider two multicriteria versions of the global minimum cut problem in undirected graphs. In the k-criteria setting, each edge of the input graph has k non-negative costs associated with it. These costs are measured in separate, non-interchangeable, units. In the AND-version of the problem, purchasing an edge requires the payment of all the k costs associated with it. In the OR-version, an edge can be purchased by paying any one of the k costs associated with it. Given k bounds b1,b2,. . . ,bk, the basic multicriteria decision problem is whether there exists a cut C of the graph that can be purchased using a budget of bi units of the ith criterion, for 1 = i = k. We show that the AND-version of the multicriteria global minimum cut problem is polynomial for any fixed number k of criteria. The OR-version of the problem, on the other hand, is NP-hard even for k = 2, but can be solved in pseudo-polynomial time for any fixed number k of criteria. It also admits an FPTAS. Further extensions, some applications, and multicriteria versions of two other optimization problems are also discussed.

Reviews

Required fields are marked *. Your email address will not be published.