A generalization of the weighted set covering problem

A generalization of the weighted set covering problem

0.00 Avg rating0 Votes
Article ID: iaor20063615
Country: United States
Volume: 52
Issue: 2
Start Page Number: 142
End Page Number: 149
Publication Date: Mar 2005
Journal: Naval Research Logistics
Authors: ,
Keywords: programming: probabilistic
Abstract:

We study a generalization of the weighted set covering problem where every element needs to be covered multiple times. When no set contains more than two elements, we can solve the problem in polynomial time by solving a corresponding weighted perfect b-matching problem. In general, we may use a polynomial-time greedy heuristic similar to the one for the classical weighted set covering problem studied by Johnson, Lovasz, and Chvatal to get an approximate solution for the problem. We find a worst-case bound for the heuristic similar to that for the classical problem. In addition, we introduce a general type of probability distribution for the population of the problem instances and prove that the greedy heuristic is asymptotically optimal for instances drawn from such a distribution. We also conduct computational studies to compare solutions resulting from running the heuristic and from running the commercial integer programming solver CPLEX on problem instances drawn from a more specific type of distribution. The results clearly exemplify benefits of using the greedy heuristic when problem instances are large.

Reviews

Required fields are marked *. Your email address will not be published.