Article ID: | iaor20063040 |
Country: | United States |
Volume: | 52 |
Issue: | 3 |
Start Page Number: | 336 |
End Page Number: | 349 |
Publication Date: | Aug 2005 |
Journal: | IEEE Transactions on Engineering Management |
Authors: | Ahn Hyun-Soo, Jan Hong-Bae, Suh Hyo-Won |
Keywords: | engineering |
A timely introduction of a new product has become invaluable to the firm since the competitors are capable of introducing new or similar products once the driving technology becomes available. In order to generate a high profit from a new product, managers in other departments, such as marketing and production, have to plan ahead of time so that a seamless series of operations can be executed from product development to mass production. Needless to say, a competitive edge is given to the firm with better knowledge on product development process. Such knowledge, nonetheless, is not easy to acquire since a typical product development process is a complex network of many relationships among activities, which we call patterns. In addition to its complex topology, the product development process is often uncertain, iterative, and evolving over time; therefore, even studying individual islands of relationships (patterns) is challenging. Although there were some existing models that shed light on some of these patterns, very little has been done to systematically analyze the product development process as a whole. In this paper, we develop analytical models that capture essential properties, including uncertainty, iteration and evolution, and estimate the cycle time of each pattern. With our proposed models, the cycle time of a set of patterns (or the whole product development process) can be effectively estimated. As demonstrated in a case study, our model provides valuable insights on how product development process progresses over time, while the corresponding time estimate can help managers to set appropriate manufacturing and marketing strategies.