Article ID: | iaor20062394 |
Country: | Netherlands |
Volume: | 12 |
Issue: | 3 |
Start Page Number: | 181 |
End Page Number: | 209 |
Publication Date: | May 2006 |
Journal: | Journal of Heuristics |
Authors: | Fernndez Joaqun L., Sanz Rafael, Simmons Reid G., Diguez Amador R. |
Keywords: | heuristics, markov processes |
This paper proposes a set of methods for solving stochastic decision problems modeled as partially observable Markov decision processes. This approach (Real Time Heuristic Decision System, RT-HDS) is based on the use of prediction methods combined with several existing heuristic decision algorithms. The prediction process is one of tree creation. The value function for the last step uses some of the classic heuristic decision methods. To illustrate how this approach works, comparative results of different algorithms with a variety of simple and complex benchmark problems are reported. The algorithm has also been tested in a mobile robot supervision architecture.