Article ID: | iaor20061991 |
Country: | United States |
Volume: | 16 |
Issue: | 4 |
Start Page Number: | 335 |
End Page Number: | 361 |
Publication Date: | Jan 2004 |
Journal: | International Journal of Flexible Manufacturing Systems |
Authors: | Jiao Jianxin, Zhang Lianfeng, Prasanna Kannan |
Keywords: | simulation: applications |
Mass customization strategies could be usefully deployed by companies whose products are characterized by a modular design. Typically, each module serves a specific aspect of the overall product function at varying performance levels. Each product variant (constructed through a unique combination of modular performance levels), therefore, serves to customize the overall performance of the product, thus serving the unique needs of each customer. The high demand for each module guarantees economies of scale and, eventually, low cost to customer. The rationale of configuring production processes for producing individual product variants originates from the fact that massive process data is commonly available in a firm and there exists a generic process structure underlying the production of similar products in a family. To design a decision support mechanism that constructs process configuration corresponding to a given product configuration, this paper develops a formal modeling of process variety using Petri nets. Object-oriented Petri nets (PNs) with changeable structures (OPNs-CS) are applied to deal with the issues of generic representation, constraints compliance, and operational sequence requirements. Object-oriented PN (OPN) models facilitate generic representation of product and process variety as well as their instantiations. The OPNs-CS model is tested with simulation. Based on simulation results, the optimal configuration of production processes can be determined for each individual product as well as the cohort of a product family. To illustrate the feasibility and potential of OPNs-CS based process variety modeling, a case study of process configuration for mass customized textile spindles is reported.