Dynamic programming equations for discounted constrained stochastic control

Dynamic programming equations for discounted constrained stochastic control

0.00 Avg rating0 Votes
Article ID: iaor2006402
Country: United States
Volume: 49
Issue: 5
Start Page Number: 699
End Page Number: 709
Publication Date: May 2004
Journal: IEEE Transactions On Automatic Control
Authors: ,
Keywords: programming: dynamic
Abstract:

In this paper, the application of the dynamic programming approach to constrained stochastic control problems with expected value constraints is demonstrated. Specifically, two such problems are analyzed using this approach. The problems analyzed are the problem of minimizing a discounted cost infinite horizon expectation objective subject to an identically structured constraint, and the problem of minimizing a discounted cost infinite horizon minimax objective subject to a discounted expectation constraint. Using the dynamic programing approach, optimality equations, which are the chief contribution of this paper, are obtained for these problems. In particular, the dynamic programming operators for problems with expectation constraints differ significantly from those of standard dynamic programming and problems with worst-case constraints. For the discounted cost infinite horizon cases, existence and uniqueness of solutions to the dynamic programming equations are explicitly shown by using the Banach fixed point theorem to show that the corresponding dynamic programming operators are contractions. The theory developed is illustrated by numerically solving the constrained stochastic control dynamic programming equations derived for simple example problems. The example problems are based on a two-state Markov model that represents an error prone system that is to be maintained.

Reviews

Required fields are marked *. Your email address will not be published.