Article ID: | iaor2006375 |
Country: | Netherlands |
Volume: | 162 |
Issue: | 2 |
Start Page Number: | 514 |
End Page Number: | 531 |
Publication Date: | Apr 2005 |
Journal: | European Journal of Operational Research |
Authors: | Yajima Yasutoshi |
Keywords: | programming: linear, datamining |
We consider linear programming approaches for support vector machines (SVM). The linear programming problems are introduced as an approximation of the quadratic programming problems commonly used in SVM. When we consider the kernel based nonlinear discriminators, the approximation can be viewed as kernel principle component analysis which generates an important subspace from the feature space characterized the kernel function. We show that any data points nonlinearly, and implicitly, projected into the feature space by kernel functions can be approximately expressed as points lying in a low dimensional Euclidean space explicitly, which enables us to develop linear programming formulations for nonlinear discriminators. We also introduce linear programming formulations for multicategory classification problems. We show that the same maximal margin principle exploited in SVM can be involved into the linear programming formulations. Moreover, considering the low dimensional feature subspace extraction, we can generate nonlinear multicategory discriminators by solving linear programming problems. Numerical experiments on real world datasets are presented. We show that the fairly low dimensional feature subspace can achieve a reasonable accuracy, and that the linear programming formulations calculate discriminators efficiently. We also discuss a sampling strategy which might be crucial for huge datasets.