Models and approximations for call center design

Models and approximations for call center design

0.00 Avg rating0 Votes
Article ID: iaor20053057
Country: Germany
Volume: 5
Issue: 2
Start Page Number: 159
End Page Number: 181
Publication Date: Jun 2003
Journal: Methodology and Computing in Applied Probability
Authors: ,
Keywords: queues: theory
Abstract:

A call center is a facility for delivering telephone service, both incoming and outgoing. This paper addresses optimal staffing of call centers, modeled as M/G/n queues whose offered traffic consists of multiple customer streams, each with an individual priority, arrival rate, service distribution and grade of service (GoS) stated in terms of equilibrium tail waiting time probabilities or mean waiting times. The paper proposes a methodology for deriving the approximate minimal number of servers that suffices to guarantee the prescribed GoS of all customer streams. The methodology is based on an analytic approximation, called the Scaling-Erlang (SE) approximation, which maps the M/G/n queue to an approximating, suitably scaled M/G/1 queue, for which waiting time statistics are available via the Pollaczek–Khintchine formula in terms of Laplace transforms. The SE approximation is then generalized to M/G/n queues with multiple types of customers and non-preemptive priorities, yielding the Priority Scaling-Erlang (PSE) approximation. A simple goal-seeking search, utilizing SE/PSE approximations, is presented for the optimal staffing level, subject to GoS constraints. The efficacy of the methodology is demonstrated by comparing the number of servers estimated via the PSE approximation to their counterparts obtained by simulation. A number of case studies confirm that the SE/PSE approximations yield optimal staffing results in excellent agreement with simulation, but at a fraction of simulation time and space.

Reviews

Required fields are marked *. Your email address will not be published.