Article ID: | iaor2005883 |
Country: | United States |
Volume: | 16 |
Issue: | 1 |
Start Page Number: | 11 |
End Page Number: | 44 |
Publication Date: | Jan 2004 |
Journal: | International Journal of Flexible Manufacturing Systems |
Authors: | Zhou Y., Kumar R., Zhou S., Huang W., Ding Y., Ceglarek D. |
Frequency of model change and the vast amounts of time and cost required to make a changeover, also called time-based competition, has become a characteristic feature of modern manufacturing and new product development in automotive, aerospace, and other industries. This paper discusses the concept of time-based competition in manufacturing and design based on a review of on-going research related to stream-of-variations (SOVA or SoV) methodology. The SOVA methodology focuses on the development of modeling, analysis, and control of dimensional variation in complex multistage assembly processes (MAP) such as the automotive, aerospace, appliance, and electronics industries. The presented methodology can help in eliminating costly trial-and-error fine-tuning of new-product assembly processes attributable to unforeseen dimensional errors throughout the assembly process from design through ramp-up and production. Implemented during the product design phase, the method will produce math-based predictions of potential downstream assembly problems, based on evaluations of the design and a large array of process variables. By integrating product and process design in a pre-production simulation, SOVA can head off individual assembly errors that contribute to an accumulating set of dimensional variations, which ultimately result in out-of-tolerance parts and products. Once in the ramp-up stage of production, SOVA will be able to compare predicted misalignments with actual measurements to determine the degree of mismatch in the assemblies, diagnose the root causes of errors, isolate the sources from other assembly steps, and then, on the basis of the SOVA model and product measurements, recommend solutions.