Article ID: | iaor20051132 |
Country: | Germany |
Volume: | 59 |
Issue: | 1 |
Start Page Number: | 69 |
End Page Number: | 89 |
Publication Date: | Jan 2004 |
Journal: | Mathematical Methods of Operations Research (Heidelberg) |
Authors: | Filege J. |
In multicriteria optimization, several objective functions have to be minimized simultaneously. For this kind of problem, approximations to the whole solution set are of particular importance to decision makers. Usually, approximating this set involves solving a family of parameterized optimization problems. It is the aim of this paper to argue in favour of parameterized quadratic objective functions, in contract to the standard weighting approach in which parameterized linear objective functions are used. These arguments will rest on the favourable numerical properties of these quadratic scalarizations, which will be investigated in detail. Moreover, it will be shown which parameter sets can be used to recover all solutions of an original multi-objective problem where the ordering in the image space is induced by an arbitrary convex cone.