Binary clutter inequalities for integer programs

Binary clutter inequalities for integer programs

0.00 Avg rating0 Votes
Article ID: iaor20051106
Country: Germany
Volume: 98
Issue: 1/3
Start Page Number: 201
End Page Number: 221
Publication Date: Jan 2003
Journal: Mathematical Programming
Authors:
Keywords: programming: travelling salesman
Abstract:

We introduce a new class of valid inequalities for general integer linear programs, called binary clutter (BC) inequalities. They include the {0, 1/2}-cuts of Caprara and Fischetti as a special case and have some interesting connections to binary matroids, binary clutters and Gomory corner polyhedra. We show that the separation problem for BC-cuts is strongly NP-hard in general, but polynomially solvable in certain special cases. As a by-product we also obtain new conditions under which {0, 1/2}-cuts can be separated in polynomial time. These ideas are then illustrated using the Traveling Salesman Problem (TSP) as an example. This leads to an interesting link between the TSP and two apparently unrelated problems, the T-join and max-cut problems.

Reviews

Required fields are marked *. Your email address will not be published.