Article ID: | iaor20043664 |
Country: | Netherlands |
Volume: | 43 |
Issue: | 4 |
Start Page Number: | 226 |
End Page Number: | 240 |
Publication Date: | Apr 2004 |
Journal: | Networks |
Authors: | Hamacher Horst W., Boland Natashia, Lenzen Frank |
Keywords: | networks: flow, programming: integer |
In this article the modulation of intensity matrices arising in cancer radiation therapy using multileaf collimators (MLC) is investigated. It is shown that the problem is equivalent to decomposing a given integer matrix into a positive linear combination of (0,1) matrices. These matrices, called shape matrices, must have the strict consecutive-1-property, together with another property derived from the technological restrictions of the MLC equipment. Various decompositions can be evaluated by their beam-on time (time during which radiation is applied to the patient) or the treatment time (beam-on time plus time for setups). We focus on the former, and develop a nonlinear mixed-integer programming formulation of the problem. This formulation can be decomposed to yield a column generation formulation: a linear program with a large number of variables that can be priced by solving a subproblem. We then develop a network model in which paths in the network correspond to feasible shape matrices. As a consequence, we deduce that the column generation subproblem can be solved as a shortest path problem. Furthermore, we are able to develop two alternative models of the problem as side-constrained network flow formulations, and so obtain our main theoretical result that the problem is solvable in polynomial time. Finally, a numerical comparison of our exact solutions with those of well-known heuristic methods shows that the beam-on time can be reduced by a considerable margin.