We consider the generalization of the classical P/Cmax problem (assign to n jobs to m identical parallel processors by minimizing the makespan) arising when the number of jobs that can be assigned to each processor cannot exceed a given integer k. The problem is strongly NP-hard for any fixed k > 2. We briefly survey lower and upper bounds from the literature. We introduce greedy heuristics, local search and a scatter search approach. The effectiveness of these approaches is evaluated through extensive computational comparison with a depth-first branch-and-bound algorithm that includes new lower bounds and dominance criteria.