Article ID: | iaor20043315 |
Country: | Netherlands |
Volume: | 43 |
Issue: | 3 |
Start Page Number: | 177 |
End Page Number: | 189 |
Publication Date: | May 2004 |
Journal: | Networks |
Authors: | Laporte Gilbert, Labb Martine, Gonzlez Juan Jos Salazar, Martn Inmaculada Rodrguez |
Keywords: | branch-and-cut, telecommunications |
In the Ring Star Problem, the aim is to locate a simple cycle through a subset of vertices of a graph with the objective of minimizing the sum of two costs: a ring cost proportional to the length of the cycle and an assignment cost from the vertices not in the cycle to their closest vertex on the cycle. The problem has several applications in telecommunications network design and in rapid transit systems planning. It is an extension of the classical location-allocation problem introduced in the early 1960s, and closely related versions have been recently studied by several authors. This article formulates the problem as a mixed-integer linear program and strengthens it with the introduction of several families of valid inequalities. These inequalities are shown to be facet-defining and are used to develop a branch-and-cut algorithm. Computation results show that instances involving up to 300 vertices can be solved optimally using the proposed methodology.