This paper deals with performance evaluation and scheduling problems in m machine stochastic flow shop with unlimited buffers. The processing time of each job on each machine is a random variable exponentially distributed with a known rate. We consider permutation flow shop. The objective is to find a job schedule which minimizes the expected makespan. A classification of works about stochastic flow shop with random processing times is first given. In order to solve the performance evaluation problem, we propose a recursive algorithm based on a Markov chain to compute the expected makespan and a discrete event simulation model to evaluate the expected makespan. The recursive algorithm is a generalization of a method proposed in the literature for the two machine flow shop problem to the m machine flow shop problem with unlimited buffers. In deterministic context, heuristics (like CDS and Rapid Access) and metaheuristics (like simulated annealing) provide good results. We propose to adapt and to test these methods for the stochastic scheduling problem. Combinations between heuristics or metaheuristics and the performance evaluation models are proposed. One of the objectives of this paper is to compare the methods together. Our methods are tested on problems from the OR-Library and give good results: for the two machine problems, we obtain the optimal solution and for the m machine problems, the methods are mutually validated.