Given n customers and a set of F of m potential facilities, the p-median problem consists in finding a subset of F with p facilities such that the cost of serving all customers is minimized. This is a well-known NP-complete problem with important applications in location science and classification (clustering). We present a multistart hybrid heuristic that combines elements of several traditional metaheuristics to find near-optimal solutions to this problem. Empirical results on instances from the literature attest the robustness of the algorithm, which performs at least as well as other methods, and often better in terms of both running time and solution quality. In all cases the solutions obtained by our method were within 0.1% of the best known upper bounds.