Tutorial on surrogate constraint approaches for optimization in graphs

Tutorial on surrogate constraint approaches for optimization in graphs

0.00 Avg rating0 Votes
Article ID: iaor20042245
Country: Netherlands
Volume: 9
Issue: 3
Start Page Number: 175
End Page Number: 227
Publication Date: Jun 2003
Journal: Journal of Heuristics
Authors:
Keywords: programming: mathematical
Abstract:

Surrogate constraint methods have been embedded in a variety of mathematical programming applications over the past thirty years, yet their potential uses and underlying principles remain incompletely understood by a large segment of the optimization community. In a number of significant domains of combinatorial optimization, researchers have produced solution strategies without recognizing that they can be derived as special instances of surrogate constraint methods. Once the connection to surrogate constraint ideas is exposed, additional ways to exploit this framework become visible, frequently offering opportunities for improvement. We provide a tutorial on surrogate constraint approaches for optimization in graphs, illustrating the key ideas by reference to independent set and graph coloring problems, including constructions for weighted independent sets which have applications to associated covering and weighted maximum clique problems. In these settings, the surrogate constraints can be generated relative to well-known packing and covering formulations that are convenient for exposing key notions. The surrogate constraint approaches yield widely used heuristics for identifying independent sets as simple special cases, and also afford previously unidentified heuristics that have greater power in these settings. Our tutorial also shows how the use of surrogate constraints can be placed within the context of vocabulary building strategies for independent set and coloring problems, providing a framework for applying surrogate constraints that can be used in other applications. At a higher level, we show how to make use of surrogate constraint information, together with specialized algorithms for solving associated sub-problems, to obtain stronger objective function bounds and improved choice rules for heuristic or exact methods. The theorems that support these developments yield further strategies for exploiting surrogate constraint relaxations, both in graph optimization and integer programming generally.

Reviews

Required fields are marked *. Your email address will not be published.