Article ID: | iaor2004911 |
Country: | United States |
Volume: | 26 |
Issue: | 1 |
Start Page Number: | 67 |
End Page Number: | 81 |
Publication Date: | Feb 2001 |
Journal: | Mathematics of Operations Research |
Authors: | Zank H. |
Different attributes towards gains and losses are a prominent feature of cumulative prospect theory for decision under uncertainty. In particular, decision weights for uncertain events can depend on whether the events inolve gains or losses, and the shape of the utility function can reveal loss aversion. Decision analyses concentrate on event capacities, which determine decision weights, and on the shape of the utility function. The present paper focuses on linear/exponential, power-function and multilinear utility models for decision under uncertainty. We begin with straightforward preference axioms for representation by a cumulative prospect theory functional. The axioms include weak ordering, continuity, monotonicity and tail independence. We show that in their presence constant absolute (proportional) risk aversion implies linear/exponential (power) utility. Then, for the multiattribute case, (mutual) utility independence leads to a utility function that is (additive/multiplicative) multilinear.