We consider the M/G/1 queueing system in which customers whose admission to the system would increase the workload beyond a prespecified finite capacity limit are not accepted. Various results on the distribution of the workload are derived; in particular, we give explicit formulas for its stationary distribution for M/M/1 and in the general case, under the preemptive last-in-first-out discipline, for the joint stationary distribution of the number of customers in the system and their residual service times. Furthermore, the Laplace transform of the length of a busy period is determined. Finally, for M/D/1 the busy period distribution is derived in closed form.