Article ID: | iaor20032663 |
Country: | United States |
Volume: | 14 |
Issue: | 1 |
Start Page Number: | 20 |
End Page Number: | 36 |
Publication Date: | Jan 2002 |
Journal: | INFORMS Journal On Computing |
Authors: | Truemper Klaus, Felici Giovanni |
Keywords: | statistics: empirical |
This paper describes a method for learning logic relationships that correctly classify a given data set. The method derives from given logic data certain minimum cost satisfiability problems, solves these problems, and deduces from the solutions the desired logic relationships. Uses of the method include data mining, learning logic in expert systems, and identification of critical characteristics for recognition systems. Computational tests have proved that the method is fast and effective.