Article ID: | iaor20023034 |
Country: | Netherlands |
Volume: | 137 |
Issue: | 1 |
Start Page Number: | 50 |
End Page Number: | 71 |
Publication Date: | Feb 2002 |
Journal: | European Journal of Operational Research |
Authors: | Jaszkiewicz Andrzej |
Keywords: | heuristics |
The paper presents a new genetic local search (GLS) algorithm for multi-objective combinatorial optimization. The goal of the algorithm is to generate in a short time a set of approximately efficient solutions that will allow the decision maker to choose a good compromise solution. In each iteration, the algorithm draws at random a utility function and constructs a temporary population composed of a number of best solutions among the prior generated solutions. Then, a pair of solutions selected at random from the temporary population is recombined. Local search procedure is applied to each offspring. Results of the presented experiment indicate that the algorithm outperforms other multi-objective methods based on GLS and a Pareto ranking-based multi-objective genetic algorithm on travelling salesperson problem.