The dynamic and stochastic knapsack problem with random sized items

The dynamic and stochastic knapsack problem with random sized items

0.00 Avg rating0 Votes
Article ID: iaor20021979
Country: United States
Volume: 49
Issue: 1
Start Page Number: 26
End Page Number: 41
Publication Date: Jan 2001
Journal: Operations Research
Authors: ,
Keywords: transportation: general, vehicle routing & scheduling
Abstract:

A resource allocation problem, called the dynamic and stochastic knapsack problem (DSKP), is studied. A known quantity of resource is available, and demands for the resource arrive randomly over time. Each demand requires an amount of resource and has an associated reward. The resource requirements and rewards are unknown before arrival and become known at the time of the demand's arrival. Demands can be either accepted or rejected. If a demand is accepted, the associated reward is received; if a demand is rejected, a penalty is incurred. The problem can be stopped at any time, at which time a terminal value is received that depends on the quantity of resource remaining. A holding cost that depends on the amount of resource allocated is incurred until the process is stopped. The objective is to determine an optimal policy for accepting demands and for stopping that maximizes the expected value (rewards minus costs) accumulated. The DSKP is analyzed for both the inifinite horizon and the finite horizon cases. It is shown that the DSKP has an optimal policy that consists of an easily computed threshold acceptance rule and an optimal stopping rule. A number of monotonicity and convexity properties are studied. This problem is motivated by the issues facing a manager of an LTL transportation operation regarding the acceptance of loads and the dispatching of a vehicle. It also has applications in many other areas, such as the scheduling of batch processors, the selling of assets, the selection of investment projects, and yield management.

Reviews

Required fields are marked *. Your email address will not be published.