Article ID: | iaor2002467 |
Country: | Germany |
Volume: | 89 |
Issue: | 3 |
Start Page Number: | 479 |
End Page Number: | 486 |
Publication Date: | Jan 2001 |
Journal: | Mathematical Programming |
Authors: | Wood G.R., Zabinsky Z.B., Kristinsdottir B.P. |
Hesitant adaptive search is a stochastic optimisation procedure which accommodates hesitation, or pausing, at objective function values. It lies between pure adaptive search (which strictly improves at each iteration) and simulated annealing with constant temperature (which allows backtracking, or the acceptance of worse function values). In this paper we build on an earlier work and make two contributions; first, we link hesitant adaptive search to standard counting process theory, and second, we use this to derive the exact distribution of the number of iterations of hesitant adaptive search to termination.