Article ID: | iaor2002315 |
Country: | Netherlands |
Volume: | 98 |
Issue: | 1 |
Start Page Number: | 65 |
End Page Number: | 87 |
Publication Date: | Dec 2000 |
Journal: | Annals of Operations Research |
Authors: | Howlett Phil |
Keywords: | control processes |
We consider the problem of determining an optimal driving strategy in a train control problem with a generalised equation of motion. We assume that the journey must be completed within a given time and seek a strategy that minimises fuel consumption. On the one hand we consider the case where continuous control can be used and on the other hand we consider the case where only discrete control is available. We pay particular attention to a unified development of the two cases. For the continuous control problem we use the Pontryagin principle to find necessary conditions on an optimal strategy and show that these conditions yield key equations that determine the optimal switching points. In the discrete control problem, which is the typical situation with diesel–electric locomotives, we show that for each fixed control sequence the cost of fuel can be minimised by finding the optimal switching times. The corresponding strategies are called strategies of optimal type and in this case we use the Kuhn–Tucker equations to find key equations that determine the optimal switching times. We note that the strategies of optimal type can be used to approximate as closely as we please the optimal strategy obtained using continuous control and we present two new derivations of the key equations. We illustrate our general remarks by reference to a typical train control problem.