Article ID: | iaor20014230 |
Country: | Netherlands |
Volume: | 129 |
Issue: | 2 |
Start Page Number: | 443 |
End Page Number: | 455 |
Publication Date: | Mar 2001 |
Journal: | European Journal of Operational Research |
Authors: | Zhu Joe |
Keywords: | programming: linear |
This paper discusses and reviews the use of super-efficiency approach in data envelopment analysis (DEA) sensitivity analyses. It is shown that super-efficiency score can be decomposed into two data perturbation components of a particular test frontier decision making unit (DMU) and the remaining DMUs. As a result, DEA sensitivity analysis can be done in (1) a general situation where data for a test DMU and data for the remaining DMUs are allowed to vary simultaneously and unequally and (2) the worst-case scenario where the efficiency of the test DMU is deteriorating while the efficiencies of the other DMUs are improving. The sensitivity analysis approach developed in this paper can be applied to DMUs on the entire frontier and to all basic DEA models. Necessary and sufficient conditions for preserving a DMU's efficiency classification are developed when various data changes are applied to all DMUs. Possible infeasibility of super-efficiency DEA models is only associated with extreme-efficient DMUs and indicates efficiency stability to data perturbations in all DMUs.