In this paper we present an efficient approach for solving single allocation p-hub problems with two or three hubs. Two different variants of the problem are considered: the uncapacitated single allocation p-hub median problem and the p-hub allocation problem. We solve these problems using new mixed integer linear programming formulations that require fewer variables than those formerly used in the literature. The problems that we solve here are the largest single allocation problems ever solved. The numerical results presented here will demonstrate the superior performance of our mixed integer linear programs over traditional approaches for large problems. Finally we present the first mixed integer linear program for solving single allocation hub location problems that requires only O(n2) variables and O(n2) constraints that is valid for any number of hubs.