The system under study is a single item, two-echelon production–inventory system consisting of a capacitated production facility, a central warehouse, and M regional distribution centers that satisfy stochastic demand. Our objective is to determine a system base-stock level which minimizes the long run average system cost per period. Central to the approach are (1) an inventory allocation model and associated convex cost function designed to allocate a given amount of system inventory across locations, and (2) a characterization of the amount of available system inventory using the inventory shortfall random variable. An exact model must consider the possibility that inventories may be imbalanced in a given period. By assuming inventory imbalances cannot occur, we develop an approximation model from which we obtain a lower bound on the per period expected cost. Through an extensive simulation study, we analyze the quality of our approximation, which on average performed within 0.50% of the lower bound.