A multiclass network with non-linear, non-convex, non-monotonic stability conditions

A multiclass network with non-linear, non-convex, non-monotonic stability conditions

0.00 Avg rating0 Votes
Article ID: iaor20002490
Country: United States
Volume: 25
Issue: 1/4
Start Page Number: 1
End Page Number: 43
Publication Date: Jun 1997
Journal: Queueing Systems
Authors:
Keywords: queueing networks
Abstract:

We consider a stochastic queueing network with fixed routes and class priorities. The vector of class sizes forms a homogeneous Markov process of countable state space Z6+. The network is said to be ‘stable’ (or ‘unstable’) if this Markov process is ergodic (or transient). The parameters are the traffic intensities of the different classes. An unusual condition of stability is obtained thanks to a new argument based on the characterization of the ‘essential states’. The exact stability conditions are then detected thanks to an associated fluid network: we identify a zone of the parameter space in which diverging, fluid paths appear. To show that this is a zone of instability (and that the network is stable outside this zone), we resort to the criteria of ergodicity and transience proved by Malyshev and Menshikov for reflected random walks in ZN+. Their approach allows us to neglect some ‘pathological’ fluid paths that perturb the dynamics of the fluid model. The stability conditions thus determined have especially unusual characteristics: they have a quadratic part, the stability domain is not convex, and increasing all the service rates may provoke instability.

Reviews

Required fields are marked *. Your email address will not be published.