Data envelopment analysis vs principal component analysis: An illustrative study of economic performance of Chinese cities

Data envelopment analysis vs principal component analysis: An illustrative study of economic performance of Chinese cities

0.00 Avg rating0 Votes
Article ID: iaor20001224
Country: Netherlands
Volume: 111
Issue: 1
Start Page Number: 50
End Page Number: 61
Publication Date: Nov 1998
Journal: European Journal of Operational Research
Authors:
Keywords: Principal components, China
Abstract:

This article compares two approaches in aggregating multiple inputs and multiple outputs in the evaluation of decision making units (DMUs), data envelopment analysis (DEA) and principal component analysis (PCA). DEA, a non-statistical efficiency technique, employs linear programming to weight the inputs/outputs and rank the performance of DMUs. PCA, a multivariate statistical method, combines new multiple measures defined by the inputs/outputs. Both methods are applied to three real world data sets that characterize the economic performance of Chinese cities and yield consistent and mutually complementary results. Nonparametric statistical tests are employed to validate the consistency between the rankings obtained from DEA and PCA.

Reviews

Required fields are marked *. Your email address will not be published.