Article ID: | iaor20001224 |
Country: | Netherlands |
Volume: | 111 |
Issue: | 1 |
Start Page Number: | 50 |
End Page Number: | 61 |
Publication Date: | Nov 1998 |
Journal: | European Journal of Operational Research |
Authors: | Zhu Joe |
Keywords: | Principal components, China |
This article compares two approaches in aggregating multiple inputs and multiple outputs in the evaluation of decision making units (DMUs), data envelopment analysis (DEA) and principal component analysis (PCA). DEA, a non-statistical efficiency technique, employs linear programming to weight the inputs/outputs and rank the performance of DMUs. PCA, a multivariate statistical method, combines new multiple measures defined by the inputs/outputs. Both methods are applied to three real world data sets that characterize the economic performance of Chinese cities and yield consistent and mutually complementary results. Nonparametric statistical tests are employed to validate the consistency between the rankings obtained from DEA and PCA.