Article ID: | iaor2000121 |
Country: | Netherlands |
Volume: | 9 |
Issue: | 4 |
Start Page Number: | 307 |
End Page Number: | 342 |
Publication Date: | Oct 1997 |
Journal: | International Journal of Flexible Manufacturing Systems |
Authors: | Kumar Ashok, Mohamed Zubair, Motwani Jaideep, Youssef Mohamed |
Despite their strategic potential, tool management issues in flexible manufacturing systems (FMSs) have received little attention in the literature. Nonavailability of tools in FMSs cuts at the very root of the strategic goals for which such systems are designed. Specifically, the capability of FMSs to economically produce customized products (flexibility of scope) in varying batch sizes (flexibility of volume) and delivering them on an accelerated schedule (market response time) is seriously hampered when required tools are not available at the time needed. On the other hand, excess inventory of tools in such systems represents a significant cost due to the expensive nature of FMS tool inventory. This article constructs a dynamic tool requirement planning (DTRP) model for an FMS tool planning operation that allows dynamic determination of the optimal tool replenishments at the beginning of each arbitrary, managerially convenient, discrete time period. The analysis presented in the article consists of two distinct phases: In the first phase, tool demand distributions are obtained using information from manufacturing production plans (such as master production schedule (MPS) and material requirement plans (MRP)) and general tool life distributions fitted on actual time-to-failure data. Significant computational reductions are obtained if the tool failure data follow a Weibull or Gamma distribution. In the second phase, results from classical dynamic inventory models are modified to obtain optimal tool replenishment policies that permit compliance with such FMS-specific constraints as limited tool storage capacity and part/tool service levels. An implementation plan is included.