We study the problem of scheduling N independent jobs in a job-shop environment. Each job must be processed on M machines according to individual routes. The objective is to minimize the maximum completion time of the jobs. First, the job-shop problem is reduced to a flow-shop problem with job precedence constraints. Then, a set of flow-shop algorithms are modified to solve it. To evaluate the quality of these heuristics, several lower bounds on the optimal solution have been computed and compared with the heuristic solutions for 3040 problems. The heuristics appear especially promising for job-shop problems with ‘flow-like’ properties.